Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Clin Cancer Res ; 26(21): 5759-5771, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-32669373

RESUMO

PURPOSE: TNF-related apoptosis inducing ligand (TRAIL) expression by immune cells contributes to antitumor immunity. A naturally occurring splice variant of TRAIL, called TRAILshort, antagonizes TRAIL-dependent cell killing. It is unknown whether tumor cells express TRAILshort and if it impacts antitumor immunity. EXPERIMENTAL DESIGN: We used an unbiased informatics approach to identify TRAILshort expression in primary human cancers, and validated those results with IHC and ISH. TRAILshort-specific mAbs were used to determine the effect of TRAILshort on tumor cell sensitivity to TRAIL, and to immune effector cell dependent killing of autologous primary tumors. RESULTS: As many as 40% of primary human tumors express TRAILshort by both RNA sequencing and IHC analysis. By ISH, TRAILshort expression is present in tumor cells and not bystander cells. TRAILshort inhibition enhances cancer cell lines sensitivity to TRAIL-dependent killing both in vitro and in immunodeficient xenograft mouse models. Immune effector cells isolated from patients with B-cell malignancies killed more autologous tumor cells in the presence compared with the absence of TRAILshort antibody (P < 0.05). CONCLUSIONS: These results identify TRAILshort in primary human malignancies, and suggest that TRAILshort blockade can augment the effector function of autologous immune effector cells.See related commentary by de Miguel and Pardo, p. 5546.


Assuntos
Imunidade Inata/genética , Neoplasias/imunologia , Isoformas de Proteínas/genética , Ligante Indutor de Apoptose Relacionado a TNF/genética , Animais , Morte Celular/genética , Morte Celular/imunologia , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica/genética , Xenoenxertos , Humanos , Camundongos , Neoplasias/genética , Neoplasias/patologia , RNA-Seq , Ligante Indutor de Apoptose Relacionado a TNF/imunologia
2.
Elife ; 92020 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-32452762

RESUMO

Molecular mimicry is an evolutionary strategy adopted by viruses to exploit the host cellular machinery. We report that SARS-CoV-2 has evolved a unique S1/S2 cleavage site, absent in any previous coronavirus sequenced, resulting in the striking mimicry of an identical FURIN-cleavable peptide on the human epithelial sodium channel α-subunit (ENaC-α). Genetic alteration of ENaC-α causes aldosterone dysregulation in patients, highlighting that the FURIN site is critical for activation of ENaC. Single cell RNA-seq from 66 studies shows significant overlap between expression of ENaC-α and the viral receptor ACE2 in cell types linked to the cardiovascular-renal-pulmonary pathophysiology of COVID-19. Triangulating this cellular characterization with cleavage signatures of 178 proteases highlights proteolytic degeneracy wired into the SARS-CoV-2 lifecycle. Evolution of SARS-CoV-2 into a global pandemic may be driven in part by its targeted mimicry of ENaC-α, a protein critical for the homeostasis of airway surface liquid, whose misregulation is associated with respiratory conditions.


Viruses hijack the cellular machinery of humans to infect their cells and multiply. The virus causing the global COVID-19 pandemic, SARS-CoV-2, is no exception. Identifying which proteins in human cells the virus co-opts is crucial for developing new ways to diagnose, prevent and treat COVID-19 infections. SARS-CoV-2 is covered in spike-shaped proteins, which the virus uses to gain entry into cells. First, the spikes bind to a protein called ACE2, which is found on the cells that line the respiratory tract and lungs. SARS-CoV-2 then exploits enzymes called proteases to cut, or cleave, its spikes at a specific site which allows the virus to infiltrate the host cell. Proteases identify which proteins to target based on the sequence of amino acids ­ the building blocks of proteins ­ at the cleavage site. However, it remained unclear which human proteases SARS-CoV-2 co-opts and whether its cut site is similar to human proteins. Now, Anand et al. show that the spike proteins on SARS-CoV-2 may have the same sequence of amino acids at its cut site as a human epithelial channel protein called ENaC-α. This channel is important for maintaining the balance of salt and water in many organs including the lungs. Further analyses showed that ENaC-α is often found in the same types of human lung and respiratory tract cells as ACE2. This suggests that SARS-CoV-2 may use the same proteases that cut ENaC-α to get inside human respiratory cells. It is possible that by hijacking the cutting mechanism for ENaC-α, SARS-CoV-2 interferes with the balance of salt and water in the lungs of COVID-19 patients. This may help explain why the virus causes severe respiratory symptoms. However, more studies are needed to confirm that the proteases that cut ENaC-α also cut the spike proteins on SARS-CoV-2, and how this affects the respiratory health of COVID-19 patients.


Assuntos
Betacoronavirus/metabolismo , Infecções por Coronavirus/virologia , Canais Epiteliais de Sódio/metabolismo , Mimetismo Molecular , Peptídeo Hidrolases/metabolismo , Pneumonia Viral/virologia , Proteínas do Envelope Viral/metabolismo , Proteínas Virais/metabolismo , Enzima de Conversão de Angiotensina 2 , Betacoronavirus/genética , Betacoronavirus/patogenicidade , COVID-19 , Canais Epiteliais de Sódio/genética , Interações Hospedeiro-Patógeno , Humanos , Pandemias , Peptidil Dipeptidase A/genética , Peptidil Dipeptidase A/metabolismo , Proteólise , SARS-CoV-2 , Especificidade por Substrato , Proteínas do Envelope Viral/genética , Proteínas Virais/genética
3.
Sci Rep ; 4: 7294, 2014 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-25465236

RESUMO

The efficacy and mechanisms of therapeutic action are largely described by atomic bonds and interactions local to drug binding sites. Here we introduce global connectivity analysis as a high-throughput computational assay of therapeutic action--inspired by the Google page rank algorithm that unearths most "globally connected" websites from the information-dense world wide web (WWW). We execute short timescale (30 ps) molecular dynamics simulations with high sampling frequency (0.01 ps), to identify amino acid residue hubs whose global connectivity dynamics are characteristic of the ligand or mutation associated with the target protein. We find that unexpected allosteric hubs--up to 20 Å from the ATP binding site, but within 5 Å of the phosphorylation site--encode the Gibbs free energy of inhibition (ΔG(inhibition)) for select protein kinase-targeted cancer therapeutics. We further find that clinically relevant somatic cancer mutations implicated in both drug resistance and personalized drug sensitivity can be predicted in a high-throughput fashion. Our results establish global connectivity analysis as a potent assay of protein functional modulation. This sets the stage for unearthing disease-causal exome mutations and motivates forecast of clinical drug response on a patient-by-patient basis. We suggest incorporation of structure-guided genetic inference assays into pharmaceutical and healthcare Oncology workflows.


Assuntos
Neoplasias/tratamento farmacológico , Neoplasias/genética , Proteínas Oncogênicas/genética , Sítios de Ligação/genética , Resistencia a Medicamentos Antineoplásicos/genética , Humanos , Simulação de Dinâmica Molecular , Terapia de Alvo Molecular/métodos , Mutação/genética , Medicina de Precisão/métodos , Ligação Proteica/genética , Proteínas Quinases/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...